Álgebra
Álgebra
El estudio de la matemática comienza con los números; primero los números naturales y los enteros y sus operaciones aritméticas, que se clasificarían dentro del álgebra elemental. Las características más avanzadas sobre números enteros se estudian dentro de la teoría de números. La búsqueda de métodos para resolver ecuaciones nos lleva al campo del álgebra abstracta, que, entre otras cosas, estudia polinomios, anillos y campos, estructuras que generalizan las características de los números corrientes. Preguntas muy antiguas sobre construcciones con regla y compás finalmente fueron resueltos usando la Teoría de Galois. El concepto físicamente importante de los vectores, generalizado a espacios vectoriales, se estudia dentro del álgebra lineal.
- Teoría del orden
Cualquier conjunto de numeros reales se puede ordenar en forma ascendente. La teoría del orden amplía esta idea a los sistemas en general. Incluye nociones como retículos y estructuras algebraicas ordenadas.
- Estructuras algebraicas
Dado un conjunto, diversas maneras de combinar o de relacionar a miembros de eso fijaron pueden ser definidas. Si éstos obedecen ciertas reglas, entonces un detalle estructura algebraica se forma. Álgebra universal es el estudio más formal de estas estructuras y sistemas.
- Teoría de cuerpos y polinomios
La teoría del campo estudia las características de campos. A campo es una entidad matemática para la cual la adición, la substracción, la multiplicación y la división están bien definido. A polinómico es una expresión en la cual se combinan las constantes y las variables usando solamente la adición, la substracción, y la multiplicación.
- Anillos conmutativos y álgebras conmutativas
En teoría de anillos (una rama del álgebra abstracta), un anillo conmutativo es un anillo en el cual la operación de multiplicación obedece la ley de conmutativo. Esto significa que si a y b son elementos del anillo, entonces a×b=b×a. El álgebra conmutativa estudia los anillos conmutativos y sus ideales, módulos y álgebras. Es fundamental para la geometría algebraica y para la teoría de números algebraicos. Los ejemplos más prominentes de anillos conmutativos son los anillos de polinomios.
Comentarios
Publicar un comentario